
Spring 2017 CMSC140 Programming Project 2: Schedule with Input

1

 Concepts tested in this project
- To work with Variables and Literals

- To learn and use different Data Type

- To learn and use Programming Style

- To learn and use Arithmetic Operators

- To work with cin command to get input

- To learn and use conditional statements

- To learn and use switch statements

- To learn and use relational operators

Project Description
This project is the continuation of project1. Use the code in project1 with the following modifications:

-Use cin command and ask the user to enter the class name, class time, total hours worked and

estimated total study time.

-Use the variables you used in your code to save the above information in order to display your

schedule.

- Use setw() command to format your schedule.

 The schedule should be displayed in a grid format, with the days of the week being the columns and the

different times during the day being the rows. Display your classes on the correct days and the correct

times during those days. Also indicate at what times you work during the week, if you do.

The program should also display, at the bottom, the total number of hours and minutes you spend at

school, at work, and the estimated number of hours and minutes you feel you will have time to study for

your classes. The total number of hours and minutes should be calculated in the program using the sum

of the number of minutes you are at college, work, or studying. Each class time for each day should have

its own variable to hold the amount of time at that class for that day. Have one variable for the total

number of minutes spent working, and one for the total number of minutes spent studying.

For example, if you spend three hours in total for one class, one hour each on Monday, Wednesday, and

Friday, each day should have its own variable to hold the number of minutes the class lasts (which is 60).

The sum of the time should also be minutes (e.g. 180). Then, at the end of the program, you will

calculate the number of hours you spend at class in total and the leftover number of minutes. (Assuming

the example is the only class, the total time would be 3 hours and 0 minutes).

Write, compile and run a C++ program that displays your schedule per week in grid style and that

calculates the total number of hours and minutes you spend at class, working, and studying. Refer to

the screen shot of the sample output for more details.

- Create appropriate variables to hold the following data:

 Name (yours)

 The number of minutes for each class (separate variables for each day as well)

Spring 2017 CMSC140 Programming Project 2: Schedule with Input

2

 A constant variable for the number of minutes in an hour (60)

 The sum of all the minutes of your classes

 The number of minutes you spend at work per week

 The number of minutes you spend studying per week (doesn’t have to be exact)

 The total number of hours spent in class, and the total number of minutes

 The total number of hours spent studying and working, and the total number of minutes for

each.

You may need to create more variables to hold data in order to operate on them later.

 Following is a sample run of the program:

Spring 2017 CMSC140 Programming Project 2: Schedule with Input

3

Note: Sunday should be included as well if you work or take classes on that day.

Spring 2017 CMSC140 Programming Project 2: Schedule with Input

4

Project 2 Submission requirements:

Notes:

o Proper naming conventions: All constants, except 0 and 1, should be named.
Constant names should be all upper-case, variable names should use “camel

case” (i.e. start with lower case, with subsequent words starting with upper
case: hoursWorked for example) or underscores to separate words (i.e.

items_ordered) (textbook, page 42)
o Variable and method names should be descriptive of the role of the variable or

method. Single letter names should be avoided.

o Documentation: The documentation requirement for all programming projects is
one block comment at the top of the program containing the course name and

CRN, the project number, your name, project description, the due date and
platform/compiler that you used to develop the project. If you use any code or
specific algorithms that you did not create, a reference to its source should be

made in the appropriate comment block. Additional comments should be
provided as necessary to clarify the program.

o Indentation: It must be consistent throughout the program and must reflect the
control structure.

o Program Header: You should include one block comment (header) at the top

of each program containing the course name and CRN, Instructor’s name, the
project number, your name, the date and a short description of the project as

follows:
/*
 * Class: CMSC140 CRN
 * Instructor:
* Project [number]
 * Description: (Give a brief description for Project1)
 * Due Date:
 * I pledge that I have completed the programming assignment independently.
 I have not copied the code from a student or any source.
 I have not given my code to any student.
 Print your Name here: __________
*/

Deliverables:

1. A Word document that includes:

 Title Page with the following information

o Project <#>, Due date (including year) , Your name, class, and section

 Screenshots of the program

 Source code for the program

 Pseudocode or flowchart for the program

2. Your source code (.cpp file). Your source code file should include a block comment (header)

listed below.

3. The C++ files zipped and saved as LastNameFirstName_Project2_Moss.zip

Spring 2017 CMSC140 Programming Project 2: Schedule with Input

5

This .zip will not have any folders in it – only .cpp files.

Note: This format is required to check for duplicate submissions using "MOSS" Plagiarism

Detection Software.

 Submit your completed assignment to Blackboard no later than the due date.

Grading Criteria for Project 2
This project will be graded using the following are components. If program does
not compile, project will get grade “0”. Contact your instructor prior to the

project submission due date, if you have compilation issues.

Attributes Value (points)

Functionality (If project does not compile, project will get grade “0”) Total 100

Displays the student’s schedule appropriately formatted 15

The required information described in project description, are asked from

the user

25

Uses setw() to format output 10

Calculates and displays the total amount of hours and minutes spent at

classes, work, and spent studying

10

Program executes correctly (produce expected output) 15

Meets all requirements 15

Overall Look-and-Feel 10

Total Total 100 points

Project General Requirements (points will be deducted)

Attributes Value(points)

Programming Style and proper naming convention: (see coding standards) (-20 pts maximum)

Constants not all caps -5

Curt or unclear variable names -5

Long variable names should use camel case or underscores to separate

words

-5

Comments and internal notes

Sparse and inadequate comments. -5

File header is not included -5

Essentially no comments -10

Indentation and white spaces should be a visual aid to understanding code
structure

Indenting is mostly okay, but sometimes inconsistent. -5

No indenting, or very inconsistent indenting
that is a barrier to understanding the code

-10

Lack of white space separating variables and operators.
Lack of white spaces separating functions and major code blocks (later projects

-5

Spring 2017 CMSC140 Programming Project 2: Schedule with Input

6

only)

Test Plan (not applicable for project 2) (-20 pts maximum)

Missing Entirely -20

Cursory or inadequate testing -10

Adequate overall, but missing a few crucial tests -5

Missing Required Items (only if required for the project) (-20 pts maximum)

Pseudocode, Flowcharts, or Hierarchy chart missing -20

Screen shots cursory or incomplete -5

Screen shots completely missing -10

List of assumptions made (not applicable for Project 2) -5

Highlights of your learning experience -5

Awkward Code Internal Structure (not applicable for Project2) (-10 pts maximum)

Hard-coding input values

-10

Poor structured programming: inappropriate loop choices,
incorrect use of break statements to exit loops, and so on (not applicable for
Project 2)

-5 each

Excessive reliance on global variables
(e.g., using them to avoid pass by reference) (not applicable for Project 2)

-5

Processing array contents piecemeal
rather than using loops (not applicable for Project 2)

-5

Other poor coding practices not mentioned -5

